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RESEARCH OBJECTIVES 

This research focuses on developing a method for the preform design engineering of ma

terial forming processes. In this research, a sensitivity analysis method for preform die shape 

design in material forming processes is developed using the rigid visco-plastic finite element 

method. The preform die shapes are represented by cubic B-spline curves. The control points 

or coefficients of B~spline are used as the design variables. The optimization problem is to 

minimize the zone where the realized and desired final forging shapes do not coincide. The 

sensitivities of the objective function, nodal coordinates, and nodal velocities with respect 

to the design variables are developed in detail. A procedure for computing the sensitivities 

of history-dependent functions is presented. The remeshing procedure and the interpola

tion/transfer of the history-dependent parameters, such as effective strain, are stated. The 

procedures of sensitivity analysis based preform die design are also described. In addition, 

a method for the adjustment of the volume loss resulting from the finite element analysis is 

given in order to make the workpiece volume consistent in each optimization iteration. The 

method developed in this report is used to design the preform die shape of H-shaped forging 

processes, including plane strain and axisymmetric deformations. The res~lts show that a 

flashless forging with a complete die fill is realized using the optimized preform die shape. 
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INTRODUCTION 

In metal forming processes, net-shape manufacturing depends on the exactness of the die 

design to a large extent, especially the preform die shape design. Preform die shape design 

engineering includes preform die and process sequence designs. They are the most impor

tant steps for the quality control of products, material savings, and reduction of the die 

design/manufacture cost. Engineering experience and intuition have been the primary tools 

in the forging industry for determining the number of stages and the preform die shapes. 

Metal forming simulations using finite elements have brought opportunity for development 

of new methods for process sequence designs. 

Kobayashi et al. [1 J introduced a finite element method that simulated the metal forming 

processes in reverse. The process known as backward tracing was applied to several practi

cal forging problems [2,3,4J. Han et al. [5J applied an optimization method in back-tracing. 

Their method determined which nodes to detach from the dies based on nodal velocities 

resulting from minimizing the difference between the maximum effective strain rate and the 

average effective strain rate for the entire billet domain. The optimization sequence is im

plemented in each incremental step. Zhao et al. [6,7] established a detachment criterion for 

backward simulation and the related preform design according to forging shape complexity 

control and applied this method in preform design of axisymmetric deformation problems. 

Zhao et al. [8J also gave an inverse die contact tracking method for designing the preform 

shape. The procedure starts with the forward simulation of a candidate preform shape into 

the final forging shape. A record of the boundary condition changes is produced by identify

ing when a particular die segment makes contact with the workpiece surface. This recorded 

boundary condition change is then modified according to the material flow characteristics. 

The modified boundary condition is finally used as the control criterion for node detachment 

during the inverse deformation simulation. 

All the above methods use both forward and backward simulations and relied on selecting 

the appropriate detachment criteria of boundary nodes during the backward simulation. In 

each case, the design objectives were the preform or intermediate forging shapes rather than 

directly designing the dies. So the preform die shape then had to be designed to produce 

the preform shape of the workpiece. 
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Badrinarayanan and Zabaras [9, 10] developed a sensitivity analysis method for large de

formation of hyperelastic viscoplastic solids that can be applied to preform design problems 

in metal forming. Like. the backward tracing, this method designs the preform or inter

mediate shape of the workpiece instead of preform dies. Their method was applied to an 

axisymmetric disk upsetting problem where the preform is designed such that, a final forging 

with a minimum barreling effect is achieved. The desired results were achieved, however the 

axisymmetric preform shape had a concave lateral shape that is very difficult-to-forge. 

Fourment et al. [11] described a method to design the preform tools and the preform 

shapes. The distance between the achieved and required part is used as the objective func

tion to be minimized. The shapes are discretized using spline functions. The design variables 

of the optimization problem are the displacements of the selected characteristic points of the 

spline in the normal direction. The gradients are calculated analytically where the friction on 

the tool-workpiece interface is considered as an exponential function of the sliding velocity. 

Shape optimization for both one and two step forging operations was performed using this 

method. 

This project focuses on optimal design of the preform die shapes instead of the preform 

shapes. An optimization method for preform die shape design in metal forming is developed 

using forward simulation only. The preform die shapes are represented using piecewise cubic 

B-splines function. The objective is to reduce the zone where the actual final forging shape 

and desired final forging shape do not coincide. B-spline coefficients are considered as the 

design variables for the sensitivity analysis and optimization problem. After completing the 

sensitivity analysis, the optimization step is performed at the end of simulation for the select

ed spline coefficients. The updated spline coefficients define the new preform die shapes and 

a complete forging simulation is again carried out to evaluate the sensitivity and objective 

function. This preform die shape updating procedure is continued until no further improve

ment is achieved. By minimizing the objective function, the net-shape manufacturing of the 

final forging can be realized using the designed preform die shapes. The required sensitivity 

analysis for rigid-plastic or visco-rigid plastic deformation problems is developed in detail, 

including the velocity boundary conditions for the contact problem. The friction boundary 

condition at the die-workpiece interface for the sensitivity analysis is modeled by an arctan

gent function [1]. The remeshing procedures and volume loss adjustment are also described 
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and examples are presented using the sensitivity analysis and optimization method. 
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FINITE ELEMENT EQUATIONS 

In the following, the governing equilibrium equations are presented for establishing the 

objective function gradients. For the complete visco-plastic analysis, reference [1] is suggest

ed. 

The element strain rate vector for 2D analysis problems can be written as: 

for plane strain (la) 

e= for azisymmetric deformation (lb) 

Substituting the elemental admissible veloci~y field of the 4-node linear element in equations 

(1a) and (lb), the element strain rate vector is represented in a unified form, as 

(

i1) ( ~Eavla) ) . "H (a) 
• e2 L..J a V2 

e = i3 = ~Pav1a) 
£4 ~(Eav~a) + Havia)) 

(2) 

where (v~a), v~a)) are the velocity components of the ath node. They correspond to Vx and V y, 

respectively. The summation is over all four nodes. Pa is zero for a plane strain problem and 

the row of i3 is deleted for plane stress deformation. For an axisymmetric problem, V1 and V2 

represent Vr and vz , respectively, and Pa becomes qa/r, where r is the radial coordinate and 

expressed as: 

(3) 
a=l 

Strain rates in the finite element formulation are typically computed from 

i=BV 

where B is the element strain rate matrix and V is the nodal velocity vector of the element. 

B matrix is expressed as: 

C 
0 E2 0 E3 0 E4 

~4 ) B= ;1 H1 0 H2 0 H3 0 (4) 
0 P2 0 P3 0 P4 

H1 E1 H2 E2 H3 E3 H4 E4 
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The elemental stiffness equation of the forging problem using FEM can be expressed as: 

K(V,X)V + F(V, X) = 0 (5) 

where 

(6a) 

. Fj(V,X) = mk-qjtan-1(--L!l..)dS 1 2 q'u ' 

Sc '1r Uo 
(6b) 

where K is the material and process dependent nonlinear stiffness matrix, F is the applied 

nodal point force vector .. X is the nodal coordinate vector of the element. Q is a large positive 

constant which penalizes the dilatational strain in the dgid-plastic formulation. qj are the 

element shape functions expressed in the natural coordinate system (e,77). u is the effective 

stress. u = u(e) and u = u(e, l) for rigid-plastic and rigid-viscoplastic materials, respectively. 

l is the effective strain rate. The friction on the interface between the workpiece and dies is 

modelled using the arctangent function of the relative sliding velocity. k is the shear yield 

stress and m is the constant friction factor. U.j is the relative sliding velocity at node j on 

the die-workpiece contact interface. The sliding velocity u. is approximated using a linear 

shape function: 

2 

U. = L qiu.i 
i=l 

Uo is a small positive number compared to u •. The components Pjh Cj of matrix P and vector 

C are constructed by using the strain rate matrix B as follows: 

where the diagonal matrix Dis: 

D- (~ - 0 
o 

o 
2 
'3 
o 
o 

6 

o 
o 
2 
'3 
o D 3 

(7a) 

(7b) 

(7c) 



In metal forming, the stiffness equation (5) is nonlinear. Evaluating stiffness matrices at 

the elemental level from equations (5) and (6), assembling them for the whole workpiece, we 

obtain a set of nonlinear equations. The solution is then obtained by using Newton-Raphson 

method which consists of linearization and application of convergence criteria. 
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OBJECTIVE FUNCTION AND DESIGN VARIABLES 

For a two-dimensional metal forming processes, suppose that Go and G represent the 

desired shape and the actual shape of the final forging, respectively. The difference between 

. Go and G is a function of the preform shape and reflects the exactness of the preform design. 

It is our design objective to make shape G close to Go by redesigning the preform dies. The 

objective function or difference of two shapes can be expressed as the area of the zone where 

the two shapes do not coincide (see figure 1). 

For the discretized boundaries of the workpiece, suppose there are N boundary nodes 

around the achieved final shape G with coordinates (z;, Y;) (i = 1,2, ... , N). Similarly, the 

boundary of the desired shape can be discretized by extending a line on the normal direction 

from each node on the material boundary to intersect the desired shape boundary. This 

provides a second set of node coordinates for the desired shape (zo;, Yo;) (i = 1,2, ... , N). By 

connecting two consecutive nodes from each boundary, a quadrilateral element is formed. 

The four nodes of each element are locally numbered in counterclockwise direction as shown 

in figure 2( a) and so the area of the element can be calculated as: 

where Z;j = Z; - Zj, Y;j = Y; - Yj. 

Occasionally, the actual final forging boundary will intersect the desired final forging 

boundary when this intersecting area occurs between two nodes. The element will appear 

as shown in figure 2(b). For this particular element, its area is calculated as follows: 

where (Z5, Y5) is the intersecting point. 

We use the sum of the square of the subarea A; as the objective function ,p. 

(8) 

When ,p approaches zero, the achieved shape G will be consistent with the desired shape Go. 

Therefore, the optimization problem is to define a preforming operation that will minimize 

the objective function ,p. 
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The shapes of the preform dies for a two-dimensional model are represented using cubic 

B-spline functions. The B-spline shapes are controlled by varying the coefficients or the 

coordinates of the co~trol points. For each control point, there are two degrees of freedom 

(Pri' pyJ i = 1,2, ... , K for a total of 2K design variables. For this unconstrained problem, the 

BFGS algorithm [12] is used to minimize the objective function 1/J with respect to the design 

variables Pl. 
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SENSITIVITY ANALYSIS 

From the objective function given by equation (8), the gradient of the objective function 

tj; with respect to the design variable PI is obtained as follows: 

Btj; ~ Btj; BZi ~ Btj; BYi 
BpI = f:t BZi BpI + f:t BYi BpI 

(I = 1,2, ... , 2K) 

Differentiating the cost function tj; with respect to the coordinates Zi and Yi gives: 

For a regular element j: 

For an intersecting element j: 

N 
Btj; = 2~ Aj BAj 
Bz- L...J Bz-

I j=1 I 

N 
Btj; =2~ AjBAj 
By- L...J By-

I j=1 I 

Bk 1 -' = -Y54 
BZ1 2 

BA- 1 -' = --Z54 
BYl 2 

Bk 1 
-' = --'Y;35 
BZ2 2 

Bk 1 
-' = -Z35 
BY2 2 

(9) 

After convergence of the finite element analysis, the velocity field at the incremental 

simulation step is used to update the nodal coordinates using the following equation: 

(10) 

where x(t+.6.t) is the nodal coordinate vector at time t+6t. x(t) is the nodal coordinate vector 

at time t and v(t) is the nodal velocity vector at time t. Differentiation of equation (10) with 
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respect to the design variables PI results in 

At the initial state (t = 0): 

BX(O) 
--=0' 

BpI 

(11) 

(12) 

It can be seen from equations (9) and (11) that the gradients of the objective function 

with respect to the design variables can be computed once the sensitivities of the nodal 

velocities with respect to the design variables are available. 

DETERMINATION OF 8V(I) 
8pI 

The nodal velocity sensitivities V'PI at time t are obtained by differentiating the equilib-

rium equation (5) with respect to the design variable PI at the elemental level. 

(13a) 

where X and V are the nodal coordinate and velocity vectors respectively for the element at 

time t. 

Equation (13a) can be simply rewritten as 

RV,p, = F,p, (13b) 

where R is the elemental stiffness matrix sensitivity (8 x 8), F,p, is the elemental force vec

tor sensitivity and V'PI is the sensitivity vector of the nodal velocities with respect to the 

lth deSIgn variable. The components ofthe matrix R and vector F,p, are expressed as follows: 

(i,; = 1,2, ... ,8) (14a) 

(i = 1,2, ... ,8) (14b) 

After evaluating the sensitivities of the stiffness matrix and the nodal force vector at the 

elemental level using equations (13) and (14), they are assembled for the whole workpiece. 

A set of simultaneous linear algebraic equations is obtained as 

(15) 
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For a given initial guess of the preform die shape, the finite element analysis of the 

preform stage is performed. In each incremental simulation step, the sensitivities of the 

node velocities to the design variables are obtained by solving equation (15) after the finite 

element solution in this step has converged. The sensitivities of the nodal coordinates with 

respect to the design variables are dependent on the deformation history and so are updated 

using equation (11). Once the simulation of the preform stage is finished, the simulation of 

the final forging stage is started. During the simulation of the final stage, the sensitivities of 

the boundary node velocities with respect to the design variables are zero since the final die 

shape does not change. When the final stage simulation is finished, the resulting sensitivi

ties of the nodal coordinates with respect to the design variables are used to calculate the 

objective function gradients using equation (9) and the objective function is calculated using 

equation (8). After a complete si~ulation including the' preform and final stages is finished, 

the optimization program DOT [13J is called to provide new control point coordinates for 

the preform dies. Usually, no upper and lower bounds are imposed on the design variables 

except in particular cases such as when a control point of the preform die must be fixed if 

half or quarter symmetry is used in the analysis. At this point, the optimization program 

also checks to see if the optimality conditions are satisfied. If the optimality conditions are 

not satisfied, the preform die shapes are updated using the new control points and the next 

optimization step begins with the initial state. If the optimality conditions are satisfied with 

the current shapes, the design objectives are met. The design optimization flow chart for 

the two-stage forging process is shown in figure 3. 

DETERMINATION OF oK;; !ill.. m ox.,. , ox.,., ov; 

According to equations (6a) and (6b), the derivatives ~~:;, M:: and ~ in equation (14) 

at the elemental level are developed as follows: 

(16) 

88_ 

8Fi _ ""1 m 8U' 1 8Pak t -1( Qju 6 j )dS 1 k 2 _1( qjU6 j )8(dS) - - ~~ ---.qi.Va--Vk an -- + m -qitan -- ---
8zn 0=1 k=l S V311" 8t t 8zn '11,0 Sc 11" 11.0 8zn 

(17) 

8Kij 11 8if if 1 8(VTpV) 1 if 8Pij 1 8Ci 1 8Cj -= h:!:- :.2) !. PijdV+ :::-dV+Q -CjdV+Q Ci-dV 
8zn v e 8e e 2e 8zn v e 8zn v 8zn v 8zn 

+ ( ~Pij 8(dV) + Q ( CiCj 8(dV) 
, J v e 8zn J v 8zn 

(18) 
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where!!.S !!.S. Ori; and o(VTJ:>-V) can be obtained according to equations (7a) through (7c). 
8x n ' 8x n ' 8x n 8x n 

Be" BBl" BB2" BB3" 
-' =--' +--' +--' 
BZn BZn BZn BZn 

The derivative matrix ~~ can be obtained by calculating 

matrix given by equation (4). The components of ~~ are expressed as follows: 

BE;jBZj = -EiEj 

BH;jBYj = -HiHj 

(i,j = 1,2,3,4) 

(i,j = 1,2,3,4) 

BE;jBYj = Aij/8IJI- EiHj (i, j = 1,2,3,4) 

BH;jBzj = -Aij/8IJI- HiEj (i,j = 1,2,3,4) 

(i,j= 1,2,3,4) 

(i,j = 1,2,3,4) 

where IJI is the determinant of Jacobian matrix and expressed as: 

(19a) 

(19b) 

(19c) 

(19d) 

from the B 

(20) 

where Zij = Zi -Zj,Yij = Yi -Yj (i,j = 1,2,3,4). For a plane strain problem, BP;jBzj = BP;jBYj = 0 

(i, j = 1,2,3,4). The coefficients Aij are given by a matrix A 

e-TJ 
-(1 + e) 

o 
I+TJ 

Interestingly, the coefficient matrix A is an anti symmetric matrix because AT = -A. 

rt should be noted that the differential volume dV and area dS are also dependant on the 

nodal coordinate vector X. By using the natural coordinates (-1 ::; e ::; 1, -1 ::; TJ ::; 1) in the 

two-dimensional space, 8~~:) and °h!~) can be represented as follows. 

For a plane strain problem: 
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where IJsl is the determinant of the Jacobian of the coordinate transformation matrix on the 

die-workpiece interface. 

(21) 

where (Zl, Yd and (Z2, Y2). are the coordinates of the two nodes of the element in contact with 

the die surface. 

For an axisymmetric problem: 

where r is the radial position of the integration point and defined by equation (3) 

8r 
--=qi 
8Z2i - 1 

8r 
-=0 
8Z2 i 

(i = 1,2,3,4) 

~~J~ and ~~:I can be obtained by using equations (20) and (21), respectively. 

BOUNDARY CONDITIONS 

On the friction boundary, the traction is prescribed in the tangential direction and the 

velocity is prescribed in the normal direction to the surface. When the interface direction 

is inclined with respect to the global coordinate axis, the coordinate transformation of the 

stiffness matrix upon the inclined direction is necessary in order to impose the mixed bound

ary conditions. The local coordinate system is defined as the inclined boundary coordinate 

system (see figure 4). The velocity boundary conditions of the ith node in contact with the 

dies are: 

T ( ) (-Sin/3) 
Vi" = V die·n = Vdie"" ~diey cos/3 (22) 

where Vi" is the velocity component of the node i in the normal direction of the interface 

surface. V die is the die velocity vector. n is the unit normal on the interface surface. /3 

is measured from the z axis in the global coordinate system to the z' axis of the local 

coordinate system in counterclockwise direction. For a B-spline function defined by Y = Y(PI, z) 
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(I = 1,2, "', 2K), the slope of the B-spline curve is *" = Yx = tan/3, Thus, the following relations 

are obtained 
. (./ Yx 

sznfJ= ~ 
vI + Y; 

1 
cos/3= ~ 

vI +Y; 

Differentiating equation (22) with respect to the design variable PI gives the following . . 

relationship: 
aVin T an asin/3 acos/3 
apl = V die apl = -Vdie", ap;- + Vdieyap;- (23) 

where :; is the sensitivity of the normal of the die surface to the design variable PI. It can 

be obtained by differentiating the equation which defines the normal of the B-spline curve. 

an _ (- o~~~{j) _ ( (1:;;;3/2) a - oco.{j - Y""I y", 
PI ~ (1+y;)3/2 

(24) 

where YXPI = ~. If the node i is not in contact with part of the dies that is being optimized, 

or if the dies are not optimized (for instance, during the final stage forging), then :; = o. 

Usually, Vdie", is equal to zero. So equation (23) can be simplified into 

aVin acos/3 
apl = Vdie y ap;- (25) 

The above boundary conditions should be imposed in the local coordinate system and 

the sensitivity equations (15) are solved in the local coordinate system. When the solution 

is obtained, it is transformed back to the global coordinate system. 

CUBIC B-SPLINE AND ITS DIFFERENTIATION 

Given the control points (PXilPy') (i = 1,2, .. " K), the design variables are P = (P1,P2, .. "P2K) = 
(PXll PYl' .. " PXK' PYK)' The (z, y) coordinates of the ith piecewise cubic B-spline function can be 

expressed by a parametric function as [14] 

z = ~[(1- S)3pXi + (4 - 68
2 + 383)pXi+l + (1 + 38 + 38

2 
- 38

3
)pXi+2 + 8

3PX i+3l (26a) 

Y = ~[(1- s)3pYi + (4 - 68
2 + 38

3
)PYi+l + (1 + 38 + 38

2 
- 38

3
)PYi+2 + 8 3

pYi+3l (26b) 

where 0 ::; 8 ::; 1. 

Differentiation of the B-spline, Yx can be obtained using the following equation: 

(27) 
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where 

(28a) 

(28b) 

The differentiations of the slope of B-spline to the design variables or control points (Px" Py;) 

are as follows: 
82y (1 - 8)2 

(29a) 
8z8pYi 2ax 

a. 

82y -48 + 382 
(29b) 

8z8PYi+l 2ax 
a. 

82y 1 + 28 - 382 
(29c) = 

2ax 8z8PYi+2 a. 

82y 82 
(29d) 

8z8pYi+3 
-

2°X 
a. 

82y (1 - s)2 8y 
(30a) 

8z8pXi 2(~~)2 8s 

82y -48 + 382 8y 
(30b) 

8z8pXi+l 2(~~)2 8s 

82y 1 + 28 - 382 8y 
(30c) 

8z8pXi+2 2(~~)2 88 

82y 82 8y 
(30d) 

8z8pXi+3 - 2(~~)2 88 

Substituting Yx (equations (27) and (28)) and YX
P1 

(equations (29) and (30)) in equation 

(24), g;, is solved. Then substituting equation (24) in equation (23) or (25) gives the velocity 

boundary conditions for the sensitivity analysis. 

REMESHING 

In practical forming processes, large deformations eventually lead to indeterminant ele

ments when the determinant of Jacobian matrix becomes negative. Therefore, a new mesh 

of the workpiece must be defined and the history-dependant variables must be transferred 

to the new mesh system. The history-dependant field variables are effective strains, node 

temperatures (only for non-isothermal analysis) and the sensitivities of the node coordinates 

with respect to the design variables. These values must be defined on the new mesh by 

interpolation. 

Sensitivities of the node coordinates with respect to the design variables are given at the 
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node points. Thus, it is assumed that the distributions of node coordinate sensitivities within 

the workpiece domain can be expressed by using the element shape functions. Interpolation 

is done by evaluating the sensitivities at the new node locations. 

ADJUSTMENT OF VOL UME LOSS 

A small volume loss of the workpiece due to geometry update within a finite time

increment is inevitable. In addition, the amount of volume loss will vary due to remeshing. 

Limiting the volume loss within a small percentage of the total deforming volume is a major 

consideration in the prediction of proper die fill and defect formation, which are important 

in process design. In a conventional finite element simulation, the amount of volume loss is 

controlled by limiting the maximum allowable time-increment. 

The initial billet volume is determined to be equal to the final forging volume. However, 

with volume loss, the achieved final forging volume V is always smaller than the initial billet 

volume Yo. The objective function depends on the area of the zone where two final forging 

shapes do not coincide. Therefore, the objective function is affected adversely by the volume 

loss. More importantly, the magnitude of volume loss may vary from one optimization 

iteration to another. This results in convergence problems of the optimization algorithm. 

To support design optimization, a volume loss adjustment procedure is incorporated in 

the simulation process. After each time-increment, the y-coordinates of the nodes in contact 

with the die surfaces are adjusted to ensure the workpiece volume equal to the initial volume 

Yo. At the same time, the die position is also adjusted by the same distance. 

Figure 5 shows an element in contact with the upper die. Suppose that the coordinates 

of node 4 are (Z4. Y4) and coordinate adjustment amount in y-direction is 6.y, The new 

coordinates of node 4 are (Z4. Y4+6.y). For axisymmetric problems, the volume ofthe element 

1234 is: 
1 1 

Ve = "2C1(Z32Y12 - Z12Y32) + "2C2(Z14Y34 - Z34Y14) 

where C1 = 2; (Zl + Z2 + Z3), C2 = 2; (Zl + Z3 + Z4)' For plane strain problems, C1 = C2 = 1. 

The volume of the element 1234' is: 

V: = ~C1(Z32Y12 - Z12Y32) + ~C2(Z14Y34' - Z34Y14') 

The volume increase due to the adjustment of the node 4 is: 

!::J.V4 = V: - Ve = ~C2(Z34 - :l')14)·!::J.y = 54' 6.y 
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By accumulating the volume increase due to the nodal coordinate adjustment over all the 

nodes in contact with the dies, the total volume increase I:::. VT is obtained. 

Letting the total volume increase due to the nodal coordinate adjustment equal to the 

volume loss (Vo - V) resulting from finite element analysis, we obtain a factor for adjusting 

the y-coordinates of the nodes in contact with the dies. 

Numerical analysis examples show that the adjustment amount I:::.y for volume loss in 

each time-increment step is very small. Usually the ratio of I:::.y to the time-increment is 

about 0.001 ....., 0.0001. Such a small adjustment does not affect the material flow patterns. But 

after the adjustment, the volume constancy is realized in every time-increment step. The 

final forging volume is exactly equal to the initial volume in various optimization iterations 

and the convergence of optimization is improved significantly. 
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DESIGN EXAMPLES 

The sensitivity analysis presented here are used to design the preform die shape of H

shaped forging in both plane strain and axisymmetric deformation modes. The goal is to 

design the preform die shape such that, after the final forging stage, a flashless forging with 

a complete die fill is obtained. 

In each case, the forging process is isothermal. A non-strain hardening material having 

the constitutive relation if = Yol,145 with Yo = 33.99Mpa was used in this example. A con

stant shear friction factor was assumed between the workpiece and the dies. The lower die 

is stationary and the upper die velocity is -1.OmmJs. Since the forging is symmetric about 

the vertical and horizontal axes, only one quarter of the cross section is considered for the 

finite element analysis. The selection of the total number of control points representing the 

preform die shapes depends on the complexity of the final die shapes. If the final die shapes 

are complex, more control points should be used. However, additional control points need 

more computation time. In this example, ten control points (PXi' Py.) (PXl > Px, > ... > PXIO) 

were used to represent the preform die shape. Therefore, there are seven spline pieces with 

twenty design variables PI (I = 1,2, ... , 20). Phantom control points are assigned at the end 

points of the preform die PX3 = -PXl = band Px, = 0 since the splines do not interpolate to 

the end points. Therefore, side constraints are imposed on design variables PXl' Px, and PX3 

during the optimization. 

PLANE STRAIN DEFORMATION 

In this case, the initial guess of the preform' die shape is a flat die. The constant shear 

friction factor m is taken as 0.2. The height of the preform shape at vertical symmetry axis 

(z = 0) is kept same for each optimization iteration. This height determines the stroke of 

the preforming stage. Figure 6 shows the resulting preform shapes and corresponding final 

forging shapes at various optimization iterations. Figure 7 shows the comparison of the 

three final forging shapes. It can be seen that the optimized shape is almost same as the 

desired shape. Figure 8 shows the objective function history over the optimization process. 

U sing the flat die initially gives a final forging with flash and incomplete die fill. After four 
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optimization iterations, the die cavity is completely filled and a flashless final forging is ob

tained. The objective function value is reduced to 0.178mm4 compared to a starting value of 

17.096mm4. For the fifth .iteration, the preform die has a relatively deep cavity which can also 

give a flashless final forging shape but the objective function has increased slightly. This is 

due to elements overlapping the curved die surface. This situation can be resolved by using a 

finer mesh. From the fifth iteration on, the objective function changes very little. Therefore, 

the preform die shape at either the fourth or seventh iteration can be selected as the optimal 

die shape. Figure 9 shows how the preform die shapes evolve with each optimization step. 

AXISYMMETRIC DEFORMATION 

In this case, the desired final forging shape cross section, friction factor m and initial 

guess of the preform die shape are same as those in plane strain deformation. The mesh de

formation patterns at the end of the preforming and final forging stages at each optimization 

iteration are shown in figure 10. Figure 11 shows the comparison of the three final forging 

shapes. The optimized shape is close enough to the desired shape. The optimization itera

tion history is shown in figure 12. Similar to the previous case, for the initial flat preform 

die, the achieved final forging has a flash although it is small and the final die cavity is not 

completely filled. The forging shape does not satisfy the dimensional requirement. After 

five design iterations, the final die cavity is completely filled and a flashless final forging 

is obtained. The objective function is reduced from 9.309mm4 to 0.210mm4. In this case, 

remeshing was needed. The preform die shape iteration history for axisymmetric problem is 

shown in figure 13. From these two analysis cases, it can be concluded that the numerical 

optimization method developed in this work is very effective in realizing a net-shape forging 

process. 

The optimization method and related sensitivity analysis presented in this work have 

been incorporated into a finite element code developed specifically for analyzing metal form

ing processes. It should be emphasized that, in fact, the experimental verification of the 

preform die shape design method developed in this work is equivalent to the verification of 

the finite element code. Once a preform die shape is obtained from an optimization iteration, 

the finite element analysis is performed to see the material flow and the workpiece shape at 
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the end of preforming and final forging stages. Therefore, the finite element analysis veri

fies the preform die design in every optimization iteration until the achieved shape is close 

enough to the desired ,shape. The results from the finite element code used in this report 

were found to correlate well with the commercial code ANTARES [15]. It was also validated 

for forging, rolling and extrusion simulations and experiments. The comparison, validation 

and experiment show that the finite element code is reliable. Consequently, the results of 

preform die shape design in this work are reasonable. 
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CONCLUSIONS 

An optimization and sensitivity analysis methods for preform die shape design in realiz

ing net-shape final forging processes was developed. The method includes the determination 

of the objective function, sensitivity analysis and the velocity boundary conditions. The 

optimization procedures, remeshing and the adjustment of volume loss due to finite element 

analysis were also introduced. The sensitivity of the objective function is calculated by the 

accumulated sensitivity of the nodal coordinates to the design variables throughout an entire 

simulation including the preforming and final forging processes. The method was applied 

to design the preform die shape in H-shaped forging processes, including plane strain and 

axisymmetric deformations. The preform shapes were obtained from the preforming stage 

using optimized preform die shapes. After the final stage forging, a flashless forging with 

complete die fill was produced. The design results are consistent with the desired final 

shapes. This procedure indicates that the computed sensitivity fields and the results of the 

preform die design are satisfactory. Each optimization step required just one complete forg

ing simulation and the procedure is very efficient. The method is very effective in realizing 

a net-shape forging. Future research needs to include the optimization of other important 

aspects, such as uniform deformation and energy requirement, so as to realize multi-objective 

optimization design of metal forming processes. 

This research strictly addresses the preform die shape design. The initial billet stock 

size (aspect ratio) is assumed empirically. The different stock size would result in different 

preform die shapes. So optimization of starting stock size has become a topic for future 

research. This could be incorporated by one additional design variable, say height for ex

ample, since the required volume is known. The method of computing shape sensitivity for 

this design variable need to be derived and implemented in a manner that is valid for both 

single and multi-stage operations. 

This research concentrates on the preform die shape of the two-dimensional problem

s. The method and ideas can also be applied to the preform die shape design for three

dimensional problems. The objective function can be expressed as the volume of the zone 

where the desired and actually achieved shapes do not coincide. The preform die shapes 

are modeled using surface splines. The control points of the surface splines are used as the 
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design variables. For three-dimensional problems, the computer time may become the major 

concern due to a large number of elements and design variables. 
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Fig 1. Desired and actually 

achieved final forging shapes. 
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(a) (b) 

Fig 2. Elements for calculating the objective function. 

(a) Regular element, (b) Intersecting element. 
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Fig 3. Sensitivity analysis based prefonn die shape design 
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Fig 5. Adjustment of volume loss. 
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